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ABSTRACT
A k-nearest neighbor (k-NN) nonparametric algorithm variant was

earlier applied successfully to estimate soil water retention. In this
study, we tested the sensitivity of that k-NN variant to different data
and algorithm options, such as: (i) estimations made to soils with dif-
fering distribution of properties; (ii) the use of different sample weight-
ing methods; (iii) the number of ensembles we developed; (iv) data
density in the reference data set; (v) the presence of outliers in the
reference data set; (vi) unequal weighting of input attributes; and (vii)
the addition of locally specific data to the reference data set. We used a
hierarchical set of input attributes and data set sizes to develop
ensembles of predictions using multiple randomized subset selections.
The k-NN technique performed comparably well as neural network
models developed on the same data. Using .50 ensemble members
did not improve the results any further. The k-NN technique showed
little sensitivity to the choice of sample weighting methods and to
suboptimal weighting of input attributes. Differences in data density in
parts of the reference data set did not substantially impact estimation
errors. Estimations substantially improved for locally specific data
when some local samples were included in the reference data set, while
estimations for other samples remained almost unaffected. The k-NN
technique shows a large degree of stability and insensitivity to different
settings and options, can easily adopt new data without the need to
redevelop equations, and is an effective alternative to other techniques
to estimate soil water retention.

MODELING WATER and solute transport has become
an important part of simulating agricultural pro-

ductivity as well as environmental quality. The use of mod-
els, however, is often hindered by the lack of information
on soil hydraulic properties. For many applications, the
estimation of those properties using pedotransfer func-
tions (PTFs) is a feasible alternative to costly and time-
consuming measurements.
One common feature of today’s PTFs is that they are

all based on some parametric approach, i.e., they are
equations with parameters found from fitting those
equations to data. Identifying the right equation and
ensuring that the associated probability distributions
of errors will be similar across the data space is not al-
ways easy. Estimation results can be heavily biased in

the case of small sample size in the development data
set. The equations need to be redeveloped and repub-
lished, should new data become available, and users
are not able to simply include any additional data sets
to improve performance for their site-specific range of
soil properties.

An alternative approach for such estimations is the
use of nonparametric techniques. Such techniques are
based on pattern recognition rather than on fitting equa-
tions to data. One of these techniques is the (k-)near-
est neighbor (k-NN), which has been widely applied in
pattern recognition and statistical classification tasks
(Dasarathy, 1991). This technique belongs to the group
of “lazy learning algorithms”. It is “lazy” in that it pas-
sively stores the data until the time of application; all
calculations are performed only when estimations need
to be generated. Applications of this technique can be
found in the literature of many fields; some recent ap-
plications in the fields of meteorology and hydrology are
Yakowitz (1993), Lall and Sharma (1996), Tarboton
et al. (1998), Sharma and O’Neill (2002), Harrold et al.
(2003a, 2003b), and Mehrotra and Sharma (2006).

In a soil physical and hydrophysical context, a
similarity-based k-NN type technique has been applied
successfully by Nemes et al. (1999) to interpolate soil
particle-size distributions. They found this technique to
perform well while estimating the missing 50-mm parti-
cle fraction for many European soils, which later served
as input to soil hydraulic PTFs. Jagtap et al. (2004)
introduced a dynamic k-NN technique to estimate the
drained upper limit and lower limit of plant water avail-
ability from field-measured soil water retention infor-
mation. They compared their model to existing soil
hydraulic PTFs to make estimations for their data set
and concluded that the k-NN technique performs better
than three published regression-type parametric PTFs.
Most recently, Nemes et al. (2006) estimated soil water
content at 233 and 21500 kPa matric potentials using a
k-NN variant and a hierarchical set of input data that
originated from the USA. In this study, the k-NN tech-
nique was found to be competitive with neural network
(NNet) models that are cited as probably the most ad-
vanced and accurate PTF technique of the day.

Application of the k-NN technique means identifying
and retrieving the nearest (most similar) stored objects
to the target object. The quality of such estimations
depends on, among others, which objects are considered
to be the nearest to the target object. An understand-
ing of how this technique works suggests, however, that
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there are several factors that may potentially have a
great influence on which objects are ruled to be nearest,
and how their influence on the final estimate is ac-
counted for. A standard k-NN does not perform attri-
bute selection; it allows irrelevant or interacting inputs
to have as much effect on the distance calculation as any
other useful inputs. Some inputs may also have a (con-
siderably) wider numerical range of data than others. A
unit change in one input variable may have a much
larger influence on the distance measure than the same
change in the other. Such concerns lead to the intro-
duction of data normalization systems and different at-
tribute weighting systems in more recent k-NN variants
(e.g., Wettschereck et al., 1997; Mehrotra and Sharma,
2006). Different recommendations exist for the weight-
ing of the retrieved nearest objects while formulating the
output of the k-NN technique. Simple averaging of the
output attributes of the retrieved neighbors is probably
the simplest solution, but it does not consider any dif-
ference in the resemblance of the retrieved neighbors to
the target object. Lall and Sharma (1996) recommended
a method that assigns weights based on the rank of each
of the retrieved k neighbors in being the nearest to the
target object. Yates et al. (2003) derived realizations of
the output variable by the selection of a single neighbor
from the retrieved k neighbors using a random number
generator. Nemes et al. (2006) used a weighting method
that assigns weights based on the distances of the re-
trieved k neighbors from the target object. Such meth-
ods have not previously been tested against each other
while being applied to estimate unsaturated soil hydrau-
lic properties.
It is unknown to what extent estimations are sensitive

to local data density in the underlying development
(reference) data set. In other words, it has not been
quantified how reliable the estimates are for a type of
soil that can be found in the reference data set but
is relatively poorly represented. The above weighting
methods may perform differently, and the estimations
may be biased or generally be less accurate for cases that
are poorly represented in the reference data set. Pedo-
transfer functions are expected to give reliable estimates
for soils that are from the same population as the data
set used to develop the PTF; however, PTFs are fre-
quently sought and tested that work well for soils that
originate from a population different than that used to
develop the PTF. Schaap and Leij (1998) showed the
great extent to which PTFs could be dependent on the
origin (and distribution) of the soils in the development
and application data sets. In the study of Nemes et al.
(2006), the k-NN technique was tested using soils that
were not in the reference data set, but that originated
from the same data source and distribution.
The approach of using an ensemble of estimation or

forecast techniques is widely used in meteorology (e.g.,
Molteni et al., 1996; Houtemaker et al., 1996; Palmer
et al., 2004). The approach essentially means averaging
the predictions of a number of models that are applied
to the data simultaneously. The rationale behind such
approach is that the use of a particular single model is
often not justifiable. Using multiple models, features

that are consistent among ensemble members will be
preserved through averaging, while those that are incon-
sistent will be reduced in amplitude. In the meantime,
the output of each member can be viewed as a potential
sample from the outcome of the estimations and be used
to calculate estimation uncertainty. In subsurface hy-
drology, Ye et al. (2004) suggested averaging of the
spatial variability models in unsaturated fractured tuff.
Guber et al. (2006) tested the performance of an en-
semble of 22 PTFs to estimate soil water retention
against measured data and subsequently used such data
in soil water flow simulations with success.

An alternative form of ensemble predictions is when
one uses multiple realizations of the PTF development
data set, obtained by, for example, randomized sub-
set selection or bootstrapping. In this way, multiple
subestimates are obtained that can be interpreted as
samples from the statistical distribution of estimation
outcomes and can subsequently be used to characterize
estimation uncertainty. Examples of such estimations
can be found in, e.g., Schaap and Leij (1998), Schaap
et al. (1999), Nemes et al. (2003, 2006), and Baker
(2005). It is not known, however, how many ensembles
are minimally needed to obtain estimates that are not
significantly changed by the addition of an additional
ensemble member. Generating an excessive number of
ensembles may not be beneficial in terms of improving
the estimations, while it increases computation time.

The objective of this study was to test the sensitivity
of the k-NN variant introduced by Nemes et al. (2006)
to different algorithm options and to differences in the
properties of the underlying data. We also compared the
performance of the k-NN technique to the performance
of NNet models developed using the same data.

MATERIALS AND METHODS

Soil Data

This work comprises seven case studies. In most case stud-
ies, we used data from two data sets described below. In Case
Study 7 we used an additional third data set. The first data-
set encompasses 2125 soil horizons that were selected from
the NRCS Soil Characterization Database (Soil Survey Staff,
1997), according to the following criteria: (i) mineral soil ho-
rizons were selected from the contiguous USA having hori-
zon notation A, A1, and Ap (and their derivatives), with the
condition that the top of the horizon was at the soil surface;
(ii) organic matter (OM) content of the selected soils was
limited to 1 to 15%, and (iii) bulk density (Db) was limited to
0.5 to 2.0 g cm23. Selected soil properties were the following:
sand (50–2000 mm), silt (2–50 mm), and clay content (,2 mm)
according to the USDA classification system (Soil Survey Staff,
1951), Db, OM content, and retained (volumetric) water at
233 and 21500 kPa matric potentials, (u33 and u1500, re-
spectively), with no missing data allowed in any of the fields.
Such matric potentials were chosen as those are often used
to approximate field capacity and the wilting point when cal-
culating plant-available water, and thus are often preferred
points in water retention curve (WRC) determinations in the
laboratory. MeasuredWRC data at those matric potentials can
be found frequently in many soil hydraulic databases world-
wide. No entries were allowed that showed obvious inconsis-
tency in physical or hydraulic data (sand1 silt1 clay5/ 1; u33,
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u1500; [(12 [Db]/2.65)2 u33], 0). This data set is referred to
below as NRCS, and has been used as reference data as well as
to provide data for testing the estimations. Samples have been
randomly drawn to be either a member of the reference data
set or a test data set. We elected to use 435 samples, i.e., |20%
of all data, as test data in each case. We used different sizes
of reference data sets to evaluate the effect of the size of the
reference data set on each examined factor. Samples were
drawn to be members of reference data sets of 100, 200, 400,
800, and 1600 samples. All random data selections were re-
peated 200 times to allow the development of an ensemble
of PTF estimations. By using a sufficiently large number of
ensembles, the impact on the final estimation results of any
single ensemble (i.e., any particular data set division) can be
minimized. Optimization of the number of ensembles was part
of this study.

A second data set from the European HYPRES database
(Wösten et al., 1999) served as an alternative test data set in
most of the case studies. These data originated from a different
geographical area and show a different data distribution than
the NRCS data set. The HYPRES data were donated by re-
searchers of some 20 institutions of different countries in
Europe. The selection process and criteria were the same as for
the NRCS data set, with one exception: there are differences in
the water retention data reported by the different sources. We
allowed water retention data reported in the ranges of 230 to
234 kPa and 21500 to 21600 kPa matric potentials to rep-
resent u33 and u1500, respectively. Altogether, we selected
435 samples from HYPRES that were used solely as an in-
dependent second test data set, referred to as HYPRES.

An additional third data set was used in Case Study 7 below.
This data collection originated from Brazil and has been used
before by, e.g., Tomasella et al. (2000, 2003). To avoid the
presence of outliers, the same limitations as for the NRCS data
set were imposed on the source data collection. This yielded a
set of 428 samples, which are referred to as BRAZ.

Table 1 shows the summary statistics of selected soil attri-
butes of the selected data sets. The data sets contain data on a
wide range of soils, in terms of the shown soil attributes. The
average sand content of the HYPRES soils is about 10% larger
than that of the NRCS soils, whereas its silt content is less by

close to the same amount. The NRCS data set represents a
substantially wider range of soils in terms of silt and clay
content than the HYPRES data set. Differences in other listed
properties are less noticeable. We converted gravimetric water
contents stored in the NRCS database to volumetric water
contents to remain compatible with most existing PTFs and
between data sets that we used. Different Db values are stored
in the NRCS database—measured at different states of wet-
ness—that had to be used to convert 233 kPa and 21500 kPa
gravimetric water contents to their respective volumetric wa-
ter content values. While the NRCS and HYPRES data sets
consist of soils that originated almost exclusively from areas
with temperate (continental or maritime) and Mediterranean
climates, most soils in the BRAZ data set originated from
areas with a tropical climate. A known physical characteristic
of many soils in the tropics is the bimodality of their particle-
size distribution (MacLean and Yager, 1972; Tomasella et al.,
2003). This results in a composition of the solid phase that is
rich in sand and clay particles while, in many soils, the silt
fraction is almost completely missing. This characteristic can
be identified in the BRAZ data set in Table 1; this set has, on
average, a substantially larger proportion of clay and lower
proportion of silt contents than the other two data sets. This
data set also has a considerably lower average Db than the
other two sets.

The k-Nearest Neighbor Technique

Unlike classic PTFs, the k-NN technique does not use any
predefined mathematical functions to estimate a certain at-
tribute. A “reference” data set—analogous to the develop-
ment or training data sets used to develop classic PTFs—is
searched for samples that are most similar to the target sam-
ple, based on selected input attributes. In most classic k-NN
variants, the “distance” measure is calculated as the classi-
cal Euclidean distance between the target and the known
instances (Wettschereck et al., 1997). In a simple case with only
two input attributes, e.g., sand and clay content, selection of
the nearest (or most similar) soil(s) can be represented geo-
metrically using Pythagoras’ theorem, as demonstrated by,
e.g., Jagtap et al. (2004). The “distance” of each soil from the
target soil can be calculated as the square root of the sum of
squared differences in sand and clay content between the
target soil and each of the soils of the reference data set. Soils
of the reference data set will then be sorted in ascending order
of their distance from the target soil. The estimated value of
the output attribute is calculated as the weighted average of
the output attribute of a preselected number of the near-
est soils.

Most PTFs, however, use information on more than two
input attributes. For such cases, the generalized form of

di 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO J
j¼1Daij

2
q

[1]

provides a sufficient solution, where di is the “distance” of the
ith soil from the target soil, Daij represents the difference
of the ith soil from the target soil in the jth soil attribute, and
J is the total number of soil attributes considered as inputs.
The term distance does not refer to actual (physical) dis-
tance, but to a measure of similarity; the distance will be
smaller for soils that are more similar to the target soil in their
input attributes.

A unit difference in one attribute may, however, not be as
influential as the same unit difference in another attribute. For
example, sand content, if given as a percentage, can take val-
ues anywhere between 0 and 100, whereas Db content ranges
theoretically from 0 to a maximum of 2.65 g cm23 in soils. In

Table 1. Summary statistics of selected soil attributes† in the data
sets.

Sand Silt Clay Db OM u33 u1500

kg kg21 g cm23 % m3 m23

NRCS

Min. 0.004 0.034 0.002 0.520 1.000 0.051 0.022
Max. 0.955 0.922 0.811 1.890 14.861 0.724 0.725
Mean 0.280 0.492 0.228 1.362 3.082 0.316 0.171
SD 0.231 0.194 0.133 0.186 2.063 0.083 0.094
Median 0.211 0.491 0.205 1.380 2.500 0.325 0.153

HYPRES

Min. 0.007 0.040 0.023 0.899 1.000 0.047 0.039
Max. 0.931 0.791 0.670 1.700 13.700 0.583 0.422
Mean 0.383 0.407 0.210 1.402 2.688 0.292 0.170
SD 0.289 0.212 0.138 0.170 1.944 0.105 0.090
Median 0.291 0.397 0.188 1.430 2.090 0.298 0.139

BRAZ

Min. 0.000 0.034 0.040 0.720 1.000 0.080 0.023
Max. 0.910 0.710 0.810 1.760 11.016 0.548 0.414
Mean 0.271 0.230 0.499 1.173 2.730 0.321 0.229
SD 0.225 0.165 0.214 0.204 1.532 0.093 0.080
Median 0.180 0.190 0.528 1.176 2.300 0.333 0.238

†Db 5 bulk density; OM 5 organic matter content; u33 5 water retention
at 233 kPa matric potential; u1500 5 water retention at 21500 kPa
matric potential.
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real data sets, the range of such values is usually narrower. A
unit difference inDb is expected to be more influential than the
same unit difference in sand content. To avoid bias toward one
attribute or the other, the data need to be normalized before
they are used to calculate “distance” using Eq. [1].

Nemes et al. (2006) suggested the following normalization.
First, all input attributes are transformed to obtain temporary
variables with distribution having zero mean and a standard
deviation of 1:

aij(temp) 5 [(aij) 2 aj] / s(aj) [2]

where aij(temp) represents the temporary value of the jth
attribute of the ith soil, and aj and s(aj) represent the mean
and standard deviation of the observed values of the jth
attribute in the reference data set. The difference between the
minimum and maximum of those temporary variables is then
examined, and the attribute that shows the widest range of
transformed (temporary) values is identified. The ratio of the
widest range of transformed values and the range of trans-
formed values of each attribute were used as a scaling factor to
obtain zero mean and the same minimum–maximum range in
the data of all attributes:

aij(trans) 5 aij(temp)(Max{range[aj51(temp)],…,

range[aj5x(temp)]}) / range[aj(temp)] [3]

where aj(temp) represents the temporary data of the jth soil
attributes normalized using Eq. [2], and aij(trans) represents the
final transformed values of the jth attribute of the ith soil that
are to be used as input.

Nemes et al. (2006) experimented with the number of soils
used to obtain the estimate of the output attribute of the target
soil (k). They suggested using k 5 0.655N 0.493 to calculate the
optimal value of k based on the size of the reference data (N)
set. Alternatives exist to this method. Lall and Sharma (1996),
for instance, suggested k 5 N1/2 for N . 100, based on their
experience under certain conditions, where N is the length of
the observed sample record, i.e., the number of known
instances in the reference data set. Both studies note, however,
the relatively low sensitivity of the technique to the choice of k.
In this study, we applied the formula suggested by Nemes
et al. (2006).

The user of the k-NN technique also has to decide how to
weight each selected soil while calculating the estimate of the
output attribute. As one solution, the simple average of their
output attribute can be calculated. In such case, the weight
[w(i)] of each selected soil will equal 1/k, where k is as defined
above. The calculated “distance” of each soil from the target
object (see Eq. [1]) will be different, however, and it can be
argued that a soil closer to the target object should have more
weight in calculating the estimated value than a soil that is
further from it. Weighting methods that allow either rank- or
distance-dependent weighting of soils offer alternative solu-
tions. One solution mentioned in the literature is that of Lall
and Sharma (1996), who calculated weights for each selected
neighbor as

w(i) 5
1/i

O k
i511/i

[4]

where w(i) is the weight associated with the ith nearest neigh-
bor and k is the number of neighbors considered. This method
considers the rank of each sample in being the nearest neigh-
bor to the target object, and does not consider the relative
distances of the selected k neighbors from the target object.
Nemes et al. (2006) used a weighting method that accounts for

the distribution of distances of the k nearest neighbors from
the target object as follows:

wi 5 di(rel) /O k
i51di(rel) [5]

where k is the number of nearest neighbors retrieved, wi is the
assigned weight, and di(rel) is the relative distance of the ith
nearest neighbor, calculated as

di(rel) 5 O k
i51di / di

� �p
[6]

where k is the number of neighbors considered, di is the
distance of the ith selected neighbor calculated using Eq. [1],
and p is a power term that was optimized to provide the best
estimation results. The p term accounts for the weight/distance
relationship and was suggested to be set at p 5 0.767N 0.049,
where N is the number of samples in the reference data set.

Nemes et al. (2006) used different (hierarchical) combina-
tions of the following input attributes: USDA sand, silt, and
clay content (SSC), Db, and OM content. They assumed that
these attributes are all equally relevant and important in the
estimation of the output attributes. Four different sets of input
attributes were used to estimate u33 and u1500 from data of
the NRCS data set. The simplest model used only SSC as
predictors. In the following two models, eitherDb, or OM con-
tent was added to SSC as a predictor (SSCBD and SSCOM,
respectively). In the fourth model, all of these inputs were used
as predictors (SSCBDOM). In this study, we implemented this
approach to avoid a possible bias while applying one particular
set of input attributes, and to account for different levels of
data availability for potential future users.

The Artificial Neural Network Technique

Recently, artificial NNet models have been used success-
fully in PTF development (e.g., Pachepsky et al., 1996; Tamari
et al., 1996; Schaap et al., 1998; Koekkoek and Booltink, 1999;
Minasny et al., 1999; Schaap and Leij, 2000; Minasny and
McBratney, 2002; Nemes et al., 2003). Most studies found that
the predictive capabilities of NNet PTFs were equivalent or
superior to different regression-type PTFs. For this reason, we
chose the NNet technique to serve as the basis of comparison
for the k-NN technique in Case Study 1.

A NNet model consists of many simple computing elements
(termed neurons or nodes), that are organized into subgroups
(layers) and are interconnected as a network by weights. A
model typically consists of an input layer, an output layer, and
one (or more) “hidden” layer(s) that connect(s) the input and
output layers. The number of nodes in the input and output
layers correspond to the number of input and output variables
of the model; the number of hidden nodes can be varied freely.
Data flow goes from the input layer through the hidden
layer(s) to the output layer. A node in the hidden and output
layers receives multiple inputs—typically from all nodes of the
previous layer. Within the node, each input is weighted and
combined to produce a single value as the output of that node,
which is then directed to all the nodes of the next layer, or
outputted if it was a node of the output layer. The weight
matrices are obtained through a calibration (training) proce-
dure, which can then be used to make estimations for indepen-
dent data. For a more thorough description on NNets, see
Hecht-Nielsen (1990) or Haykin (1994).

Following Nemes et al. (2006), we used a three-layer back-
propagation NNet model. There are different approaches to
set the number of nodes in the hidden layer. We elected to
calculate it as half of the total number of input and output
variables, rounded up to the nearest integer. Four different
models, each using a different set of input attributes, were
developed to estimate u33 and u1500 separately from data of
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the NRCS data set. To allow direct comparison with the
performance of the k-NN models, inputs to the four NNet
models were the same as inputs to the four k-NN models out-
lined above. We transformed all data, before being presented
to the NNets, to take up the interval [0,1].

The NNets were combined with the data selection pro-
cedure of the bootstrap method (Efron and Tibshirani, 1993)
to generate internal calibration–validation data set pairs for an
early stopping procedure. We generated 10 bootstrap replica
data sets, each of which was used to calibrate the NNet models.
This procedure provided 10 subestimates that could be slightly
different from each other. The estimate of a PTF from one
particular ensemble data set—for each single value—was then
calculated by averaging the 10 subestimates of the value. Ap-
plication of the bootstrap method took place internally in the
NNet program to derive the best estimates from each ensem-
ble’s development data set, and was performed independently
within each of the 200 PTF ensembles described above. All
NNet modeling was performed using the Neural Network
Toolbox in MATLAB (Demuth and Beale, 1992).

Evaluation Criteria

In Case Study 1, k-NN estimations were compared with
NNet estimations. Other case studies provided comparisons
made only between k-NNmodels using different settings. In all
cases, the goal was to report on or to minimize the estimation
errors for the test data set(s) at the population level, which was
characterized by two measures. Root mean squared residual
(RMSR) of the estimations is defined as

RMSR 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/N)ON

i51
(ui 2 ûi)

2

s
[7]

and the mean residual value (MR) is calculated as

MR 5 (1/N)ON
i51

(ui 2 ûi) [8]

In Eq. [7] and [8], N is the number of samples in the test data
set, u and û are measured and estimated water contents, re-
spectively. The MR can quantify systematic errors between
measurements and estimations and the RMSR can give the
accuracy of the estimations in terms of standard deviations.

For Case Study 4, however, we do not directly report onMR
or RMSR values, as the actual values have no particular im-
portance. Rather, we examined the correlation between the
estimation error (residual) for the individual test soils and the
distance of the retrieved neighbors from the target object,
using R2, the coefficient of determination, calculated as

R2 5
[N(Oxy) 2 (Ox)(Oy)]2

{NO[x2 2 (Ox)2]}{NO[ y2 2 (Oy)2]} [9]

where x and y represent the independent and dependent vari-
ables in the equation, respectively, and N is the number of sam-
ples. The R2 shows what proportion of the dependent variable
can be attributed to the effect(s) of independent variable(s).

CASE STUDIES
Application of the k-Nearest Neighbor Technique

to Data from an Alternative Data Source
The k-NN technique was applied to estimate u33 and

u1500 for the HYPRES data set, using the NRCS data

set as the reference data set. The rationale behind this
case study was that PTFs usually produce worse estima-
tions for data that originate from a different geograph-
ical area than for the data used to develop or train the
PTF. We compared the degree of such loss in accuracy
by the k-NN technique and an alternative technique.
The k-NN technique was applied using each of five
reference data set sizes (N 5 100, 200, 400, 800, and
1600) and four input attribute sets (SSC, SSCBD, SSCOM,
and SSCBDOM) to estimate two output attributes (u33
and u1500). To demonstrate the capabilities of this tech-
nique, NNet models were also applied to estimate the
same output attributes, using the same sets and the same
input attributes as for the k-NN technique. This way we
show the pure difference between the two techniques, with-
out being affected by differences originating from the un-
derlying data.

Comparison of Methods to Weight the Retrieved
k Neighbors

The user of the k-NN technique has to make a choice
how to weight the retained neighbors while forming the
estimate of the output attribute. We examined three
alternative methods: (i) simple averaging of the output
attributes of the retrieved neighbors; (ii) “rank”-based
weighting according to Lall and Sharma (1996) (Eq. [4]);
and (iii) distance-based weighting according to Nemes
et al. (2006) (Eq. [5] and [6]). These weighting methods
were implemented in the algorithm separately, each
combined with each of the reference data set sizes, input
attribute sets and output attributes, as outlined for Case
Study 1. The NRCS data set was used as the reference
data set, and estimations were made for soils of both the
NRCS and HYPRES test data sets.

Sensitivity of the Estimation Accuracy to the
Number of Model Ensembles

When multiple realizations are developed from the
same master data set, usually the number of ensembles
is set arbitrarily. It is rarely examined—and thus remains
a question—whether the outcome of the estimations
would be significantly changed if the developer chose
to use more or fewer ensembles. This may result in sub-
optimal estimation result—when the number chosen is
too small—or in unnecessarily long computations—
when the number chosen is too large. We examined the
effect of the number of ensembles using each of the five
reference data set sizes, four input attribute sets, and
two output attributes as outlined for Case Study 1. The
NRCS data set was used as the reference data set, and
estimations were made for soils in both the NRCS and
HYPRES test data sets. Two hundred ensembles were
run and running RMSRs were recorded after the com-
pletion of estimations using each ensemble.

Sensitivity of the k-Nearest Neighbor Technique to
Data Density

One of the reported advantages of the k-NN tech-
nique is that, unlike parametric PTFs, it uses information
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that is specific to the target object. It does so as the
“nearest neighbors” are selected in terms of their prop-
erties, meaning that they are similar to the target object.
Parametric PTFs do not work this way; one (set of) para-
metric equation(s) describes the entire data space. It can
be argued, however, that estimation errors may be much
larger when the selected “nearest” neighbors are still
distant from the target object, i.e., when the data density
in the reference data set is small at some locations in the
data domain, meaning that some of the target objects
are not well represented. We hypothesized that larger
distances calculated according to Eq. [1] will lead to
larger estimation errors. To test this, we correlated esti-
mation errors with the calculated distances between the
retrieved nearest neighbors and the target objects.

Sensitivity of the k-Nearest Neighbor Technique to
the Potential Presence of Outliers

Input data are normalized before being presented to
the calculation algorithm. This is done to assure that the
different input attributes will receive equal weight in the
distance calculations (Eq. [1]). It may happen, however,
that the k-NN technique there are just a few outliers in
the unique data set, which may expand the data range of
one or more of the input attributes. When an outlier is
present, it may not add much to the characterization of
the whole data set, but may mask the “true” effective
data range in the data set. The significance of this phe-
nomenon in the proposed k-NN variant is that while
performing the data normalization (i.e., Eq. [2] and [3]),
an input attribute with outlier(s) may eventually get
lower weight in the distance calculations than it would
based on its effective data range.We examined the effect
of the presence of outliers in the reference and test data
sets by simulating the presence of outliers. In this case
study, we used only the NRCS data set that was also
used in the preceding case studies. Specifically for this
case study, we imposed further limitations on this data
set. We left out the samples with their sand content,0.1
or .0.8 kg kg21, and samples with OM content ,2% or
.14%. As a result, we obtained a set of 650 samples. We
then put only two of those discarded samples back in the
data set in a controlled manner. We recorded whether
those samples appeared (i) only in the reference data
set, (ii) randomly in the reference or test data sets, or
(iii) only in the test data set. We also ran a fourth option,
in which neither appeared in any of the data sets. To stay
consistent with the established reference data set size
options, we elected to use 400 samples as a reference
data set in each of the ensembles. All other samples
were used as test data.

Unequal Input Attribute Weighting
It can be argued that equal weights assigned to each

input attribute—as introduced by applying Eq. [2] and
[3]—may not provide the best possible results, and that
particular attribute(s) should receive more weight. As a
simple example, we refer to the known dominance of
clay content over that of sand content in the character-
ization of the dry end of the water retention curve, e.g.,

u1500 in our study. This is because clay particles have a
significantly larger role in determining the presence and
distribution of finer pores in the soil, which control soil
hydraulic properties in the dry range. To test the per-
formance and sensitivity of the k-NN technique to un-
equal attribute weighting, we introduced additional
scaling to each of the input attributes after normaliz-
ing them first according to Eq. [2] and [3]. This concept
has the same logic as the influence weight concept of
Mehrotra and Sharma (2006). By applying all combina-
tions of weight factors of 1, 5, 10, 30, 100, and 200, we
introduced scaling to cover ratios of 1, 2, 3, 3.33, 5, 6,
6.66, 10, 20, 30, 40, 100, and 200 to 1. All combinations of
all the above ratios were applied to all input attribute
combinations in the algorithm that used all listed input
attributes (SSCBDOM) and the reference data set size
of 1600 samples. We used the NRCS test data set to test
the performance of each of the weight combinations.
Root mean squared residual values were ordered and
combinations of attribute weights that yielded the
smallest RMSRs were logged. Models were compared
with each other and with the base model with 1:1 attri-
bute weights.

Estimations using Locally Specific Data
An advantage of this nonparametric technique is that

it is capable of easily adopting new, locally specific data
into a general reference data set that had been pre-
viously established. Should new data become available,
the user is able to include those in the reference data set
without the need to redevelop or republish any equa-
tions or calculation matrices. A user will presumably be
able to improve estimations for specific local samples by
incorporating existing local information in the reference
data set, without affecting estimations for other sections
of the data space. We tested this potential feature of the
k-NN technique by introducing to the study an addi-
tional data set that originated from Brazil. This data
collection originated primarily from areas with a tropical
climate, as opposed to our previously used two data sets,
NRCS and HYPRES.

It was hypothesized that the addition of “locally
specific” samples would only have noticeable impact on
estimations made to other samples from this location
without causing significant alteration or degradation in
the performance for other samples. This was assumed
because the addition of locally specific data changes or
improves data density locally in that specific part of the
data space. Using the k-NN technique means that we
selected samples from the close neighborhood of the
target object—in terms of its properties—from the ref-
erence data set. For soils with other textures, the original
reference data set (without locally specific data) would
supposedly provide the same estimations as before, as
the locally specific samples would not be selected as the
nearest neighbors because of the larger differences in
their properties. We used the default NRCS data set to
provide samples for the reference data set, similar to the
other case studies. We used 1600 samples. As an option,
additional data from the BRAZ data set was also used as
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input. Figure 1 shows the particle-size distribution of the
soils in all three data sets. We divided the BRAZ data set
into two parts. The section above the divider lines
(labeled [OUT]) contains soils the texture of which are
practically not found in the NRCS and HYPRES data
sets. This is despite the fact that simple summary sta-
tistics did not reveal that (c.f., Table 1). The divider lines
are defined by the CLAY(kg kg21) . 0.7–0.75 3
SAND(kg kg21) and CLAY(kg kg21) . 0.1 equations.
To account for the presence of locally specific data in the
reference data set, the BRAZ[OUT] data were ran-
domly split, and part of the data (108 in each case) were
optionally added to the original reference data sets. The
rest of the BRAZ[OUT] data set (N5 160) was used for
testing, along with the NRCS test set, and HYPRES and
BRAZ[IN] (N 5 160) data sets. Ensemble estimations
of both u33 and u1500 water contents were made using a
reference data set of 1600 NRCS soils with the 108
BRAZ[OUT] soils optionally added. We used two dif-
ferent sets of input attributes: (i) textural properties only
(SSC); and (ii) textural properties plus Db and OM
content (SSCBDOM).

RESULTS AND DISCUSSION
Application of the k-Nearest Neighbor Technique

to Data from an Alternative Data Source
Using the design parameters k and p, calculated after

Nemes et al. (2006), we applied the k-NN technique,
using all five data set sizes and four input attribute sets,
and made estimations for both output attributes for the
HYPRES data set. We also performed the same estima-
tions on identical data using NNet models. Results, in
terms of RMSR, are summarized in Table 2. Root mean
squared residual values are shown separately for each
output attribute, estimation technique, input attribute
set, and each development or reference data set size.
Trends that can be observed in Table 2 correspond to
those reported by Nemes et al. (2006): more accurate
estimations of u1500 than of u33; a slight improvement
in the estimations when more input attributes were used;
and the mostly insignificant loss of estimation accuracy
with a smaller number of samples used in the reference
data set. These apply to both techniques. Root mean
squared residuals for the HYPRES data set are, in gen-
eral, 0.01 to 0.016 m3 m23 worse than those reported by
Nemes et al. (2006) for the NRCS data set. This is ob-

served using both techniques, and is consistent with the
findings of, e.g., Schaap and Leij (1998). Estimations
made for a data set having different data characteristics
than the development data set is expected (and was
shown) to be worse than for a data set having the same
characteristics. This was also the case in this study, inde-
pendent of which estimation technique was used. When
the two techniques are compared pairwise, the NNet
model resulted in 0.001 to 0.005 m3m23 smaller average
RMSRs; such differences are only 0.001 m3 m23 larger
than those reported by Nemes et al. (2006). Lesser esti-
mation accuracy for the HYPRES data set does not
seem to be due to lesser capabilities and suboptimal
settings of the k-NN technique because the NNet model
lost accuracy comparably.

Comparison of Methods to Weight the Retrieved
k Neighbors

We compared three weighting methods that are dif-
ferent in their fundamentals. Simple averaging naturally
means that for a given estimation, any of the selected k
neighbors will carry equal weights. The method of Lall
and Sharma (1996) assignsweight to each of the selectedk
neighbors based on their rank in similarity to the target
object in their input attributes. Themethod ofNemes et al.
(2006) accounted for the distribution of their actual
degree of similarity to the target object. Results have been
averaged by the input and output attributes, and are
presented for each weighting method and reference data
set size in Fig. 2. The differences between RMSRs at the
population level using the three weighting methods are
statistically insignificant within each test data set and
reference data set size. This is somewhat surprising, be-
cause it suggests that no differentiation is really necessary
among the k number of selected samples, regardless of
their actual resemblance to the target object. Thismay still
be understandable, given their closeness; the selected k
samples all have significant relevance to the target object.
There are special cases, however, when the target sam-
ple falls close to the edge of the data domain in one or
more properties, or the combination of its properties may
simply not bewell represented in the reference data set. In
these cases, some of the selected k neighborsmay fall a lot
farther from the target sample in their properties than
other selected samples. Neighbors that are significantly
farther than others should theoretically get much less

Fig. 1. Distribution of samples in the NRCS, HYPRES, and BRAZ data sets according to the NRCS textural triangle.
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weight when calculating the final output. Differences in
the estimations for such special cases may be the reason
why the weighting method of Nemes et al. (2006) is, by a
narrow and insignificant margin, still the most accurate
method of the three.

Sensitivity of the Estimation Accuracy to the
Number of Model Ensembles

We plotted the running RMSR values against the total
number of ensembles after each replication data set had
been applied to make estimations. We show a represen-
tative example of such plots in Fig. 3, for the SSCBDOM
model and u1500 as output. In Fig. 3, the average RMSR
obtained after using M ensembles is shown, meaning
that the last record on each line (at M 5 200) in Fig. 3b
matches the mean values shown in Table 2, line 12. For
any M and M 1 1 ensemble number pairs, differences
among their performance were too small for the t-test
to show statistically significant differences at p 5 0.95.
When M is small, e.g., M , 20, changes in average
RMSR are visible in Fig. 3; however, due to large stan-
dard deviations, changes are not statistically significant.

It was still desirable, however, to establish a minimum
number of ensembles to be used to obtain stable RMSR,
i.e., quasi-flat lines in Fig. 3. The case shown in Fig. 3

Fig. 2. Estimation accuracy using three different weighting methods to
make estimations for the NRCS (below) and HYPRES (above) test
data sets.

Fig. 3. Running root mean squared residuals (RMSR) for the (a)
NRCS and (b) HYPRES test data sets for up to 200 ensembles
using sand, silt, clay, bulk density, and organic matter content as
input and water retention at 21500 kPa matric potential as output.

Table 2. Root mean squared residuals for the HYPRES data set using the k-nearest neighbor technique with settings according to Nemes
et al. (2006), and the neural network models.

Sample size of the pedotransfer function development data set (N)

N 5 1600 N 5 800 N 5 400 N 5 200 N 5 100

Estimated attribute Estimation method Input attributes† Mean SD Mean SD Mean SD Mean SD Mean SD

Water retention at 233 kPa Nearest neighbor SSC 0.069 ,0.001 0.069 0.001 0.070 0.001 0.071 0.002 0.072 0.003
SSC, Db 0.067 ,0.001 0.067 0.001 0.068 0.001 0.068 0.002 0.070 0.003
SSC, OM 0.066 ,0.001 0.066 0.001 0.066 0.001 0.067 0.002 0.069 0.002
SSC, Db, OM 0.065 ,0.001 0.065 0.001 0.066 0.001 0.067 0.002 0.068 0.002

Neural network SSC 0.067 ,0.001 0.067 0.001 0.067 0.001 0.067 0.001 0.068 0.002
SSC, Db 0.065 0.001 0.066 0.001 0.065 0.001 0.067 0.002 0.067 0.003
SSC, OM 0.063 0.001 0.064 0.001 0.065 0.002 0.065 0.002 0.067 0.004
SSC, Db, OM 0.063 0.001 0.063 0.001 0.064 0.001 0.065 0.002 0.066 0.003

Water retention at 215000 kPA Nearest neighbor SSC 0.051 ,0.001 0.051 0.001 0.052 0.001 0.052 0.001 0.053 0.002
SSC, Db 0.051 ,0.001 0.051 0.001 0.052 0.001 0.053 0.001 0.054 0.002
SSC, OM 0.051 ,0.001 0.051 0.001 0.052 0.001 0.052 0.001 0.054 0.002
SSC, Db, OM 0.051 ,0.001 0.051 0.001 0.052 0.001 0.052 0.001 0.054 0.002

Neural network SSC 0.050 ,0.001 0.049 0.001 0.049 0.001 0.049 0.001 0.050 0.001
SSC, Db 0.050 ,0.001 0.050 0.001 0.050 0.001 0.050 0.001 0.050 0.002
SSC, OM 0.048 ,0.001 0.048 0.001 0.048 0.001 0.048 0.002 0.048 0.003
SSC, Db, OM 0.049 ,0.001 0.048 0.001 0.048 0.001 0.049 0.002 0.049 0.003

† SSC 5 sand, silt, and clay content; Db 5 bulk density; OM 5 organic matter content.

R
e
p
ro
d
u
c
e
d
fr
o
m

V
a
d
o
s
e
Z
o
n
e
J
o
u
rn
a
l.
P
u
b
lis
h
e
d
b
y
S
o
il
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

1229www.vadosezonejournal.org



shows, for both test data sets, that the amplitude of
changes is relatively larger using the first 30 (NRCS) to
50 (HYPRES) ensembles, and that there is practically
no change after those cutoff points in any of the curves.
For larger reference data set sizes, this flat tail of the
graphs emerges after a smaller number of ensembles.
Such behavior could be expected, since with larger sub-
data sets picked from the same master data set, the
overlap between subdata sets will be more expressed,
meaning that a smaller difference in estimations is ex-
pected, leading to less amplitude caused by an individual
ensemble member. We have applied various criteria to
determine the cutoff point at which we consider the es-
timations unchanged by the addition of further ensem-
ble members. Table 3 lists cutoff ensemble numbers that
were found after setting an absolute and a relative cri-
terion to consider the estimations unchanged. In relative
terms, we were seeking the ensemble number after
which the change in RMSR did not exceed 0.01% of its
value. Depending on the particular test data set and
input–output combination used, it took the use of 21 to
55 ensembles to reach stability in this respect. In abso-
lute terms, we were searching for the ensemble number
from which the RMSRwould remain within 0.001m3 m23

of the RMSR obtained using 200 ensemble members.
This was achieved by using as few as two to seven ensem-
ble members in many cases, and the maximum number
of ensembles to meet this criterion was 26. Each value
in Table 3 is the largest out of five values, representing
the five different reference data set sizes. Typically, the
presented values come from the models that used 100 or
200 samples in the reference data set because less over-
lap between data sets leads to larger variability in the
estimations. Overall, it seems to be safe to state that, for
this application, approximately 50 ensemble members are
enough to minimize estimation errors.

Sensitivity of the k-Nearest Neighbor Technique to
Data Density

We hypothesized that larger distances calculated ac-
cording to Eq. [1] would lead to larger estimation errors.
We correlated the absolute value of the estimation er-

rors with the calculated distances of the nearest soils
neighbors found in the reference data set to each indi-
vidual target object. We used the absolute value of
estimation errors in the analysis to make sure positive
and negative errors did not cancel each other. Figure 4
shows the summary of our findings, where R2 values
have been averaged across reference data set sizes and
input attribute sets used.

Correlation between the absolute value of errors and
the distance of the kth neighbors is generally weak; the
maximum value ofR2 was just above 0.1 when u1500 was
estimated for the NRCS test data set. Such correla-
tions were consistently smaller for the HYPRES data
set, regardless of which output attribute was estimated
(maximum R2 5 0.056). Another general observation is
that it was the first nearest neighbor’s distance that
matters least for the magnitude of the estimation errors,
regardless of which data set or output was used. This is
suggested by the smallest R2 found for k 5 1 on each
curve in Fig. 4. The importance of the distance of the
other selected soils (k 5 2 | 25) did not vary much,
except for u1500 of the NRCS set. There are substantial
differences between R2 values for the different kth
neighbors, and the clustering of the points is noticeable.

The reason for such clustering is demonstrated in
Fig. 5. As was mentioned above, points obtained for
Fig. 4 are a result of averaging the outcomes of using
different reference data set sizes. Figure 5 shows the
results separately for the five reference data set sizes
that yielded the “NRCS 1500” points in Fig. 4. As we
followed the recommendation of Nemes et al. (2006) to
optimize the number of selected soils (k), k is a function
of the size of the reference data set that was used. Us-
ing the suggested equation—k 5 0.655N0.493, as above—
weobtained values of 6, 9, 13, 18, and 25 for k for reference
data set sizes of 100, 200, 400, 800, and 1600, respectively,
which is reflected in Fig. 5. For this test data set (NRCS)
and output variable (u1500), we found larger variation in
R2 values obtained using different reference data set sizes
than for other cases in Fig. 4. The R2 values are more
evenly distributed among neighbors for larger reference

Table 3. Number of ensembles needed for each input–output com-
bination to reach a relative stability of ,0.01% of the actual
root mean squared residuals value if one more ensemble is
added (Columns a) or an absolute stability of ,0.001 m3m23

compared with the accuracy obtained using 200 ensembles
(Columns b) for two different data sets. Each entry is the worst
performing of five input data set sizes.

NRCS HYPRES

u33‡ u1500‡ u33 u1500

Input attributes† a b a b a b a b

SSC 36 18 54 14 55 21 25 4
SSC, Db 52 7 36 7 52 17 29 6
SSC, OM 21 2 30 14 39 26 24 6
SSC, Db,OM 30 16 36 7 39 18 27 6

† SSC 5 sand, silt, and clay content; Db 5 bulk density; OM 5 organic
matter content.

‡ u33 5 water retention at 233 kPa matric potential; u1500 5 water
retention at 21500 kPa matric potential.

Fig. 4. Correlation between the absolute values of the estimation er-
rors and the actual distance values (di) of each of the k neighbors.
Different data set sizes are averaged.
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data set sizes, where more soils were selected. The largest
correlation was found for the last (sixth) selected neighbor
of the smallest reference data set (N 5 100), R2 5 0.125.
Figure 6 shows the scatter plot and the regressed line that
yielded this value in Fig. 5; all other data set input–output
combinations yielded weaker correlations. Overall, the k-
NN technique is not very sensitive to data density in terms
of the estimation errors. Distant, but probably evenly dis-
tributed (surrounding), neighbors do not result in a much
biased estimate for the individual soil. One selected neigh-
bor may have a substantially larger value for the output
attribute, but the other may have a smaller value by the
same margin. The two values, when averaged, will yield a
reasonable estimate and estimation error for the target
soil, despite the large actual distances calculated for the
neighbors, and the potentially largely different individual
values in terms of the output attribute.

Sensitivity of the k-Nearest Neighbor Technique to
the Potential Presence of Outliers

Figure 7 shows the sand and OM content of the soils
used in this case study. The two outliers were added or
omitted in each case according to the four different out-
lier settings. Figure 8 shows the RMSR values that were
obtained using different input–output combinations.
Outlier Setting 4 can be considered the point of refer-
ence in each case, as there were no outliers in any of the
data sets in that setting. For u33, there is practically no
difference in the estimation results between any of the
other outlier settings when cases using the same set of
input attributes are compared. For u1500, there is a
slight (,0.002 m3 m23) increase in the estimation errors
with the outliers always being in the reference data set
or being allowed to randomly be included in any of the
two data sets. This difference is insignificant, however,
compared with the variation within the ensemble
RMSRs. In this case study, results in Outlier Setting 3—
i.e., when the outliers are in the test data set—were not
expected to differ much from the reference case. This is
because the outliers represent only two out of 250 soils,
and are thus practically a negligible part of the RMSR
calculations. When they are present in the reference
data set, however—in all cases or only randomly (i.e.,
Settings 1 and 2)—they have an impact on all calcula-
tions for all test soils because they have an impact on the
ratio between different input attributes in the data
standardization (see Eq. [2] and [3]). Our study, how-
ever, only tested the potential presence of outliers
whose properties differed from the properties of the
reference data set to a reasonable and realistic extent.

Unequal Input Attribute Weighting
Figure 9 shows the best combination of weights to

minimize RMSR for the NRCS test data set. For both
output variables, we show the running average weights
to each input attribute, obtained considering the best
1 to 50 weight combinations. We examine the running
averages of multiple models rather than individual mod-

Fig. 5. Correlation between the absolute values of the estimation er-
rors and the actual distance values (di) of each of the k neighbors.
Different data set sizes are expanded for the NRCS data set for
estimating water retention at 21500 kPa matric potential.

Fig. 6. Correlation between the absolute values (ABS) of the esti-
mation errors and the distance values (di) of the sixth neighbor.
Estimations are shown for estimating water retention at21500 kPa
matric potential for the NRCS test data set using 100 samples in the
reference data set and all described inputs (sand, silt, clay content,
bulk density, and organic matter content).

Fig. 7. Sand and organic matter (OM) contents in the limited NRCS
data subset used in Case Study 5. Data points symbolized by open
circles (N 5 2) are considered hypothetical outliers.
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els to counter possible outlying cases and to monitor
trends in the weighting of input attributes. It may also
happen that the best combination of weights falls some-
where between our picks of scaling factors. In Fig. 9,
weights are presented in a standardized way, so that the
minimum weight assigned to any attribute will be equal
to 1. That attribute will carry the least weight in the best
performing models. In Fig. 9a, in the estimation of u33,
sand content was the least important input attribute,
having its value at 1, regardless of how many of the first
50 best models we averaged. The weight of silt and OM
content were also very close to 1. Clay content and Db
were two input attributes that had significantly larger
weights assigned in the best models. They both started
around a weight factor of 4, with Db receiving gradually
less weight but clay content assuming gradually more
average weight when more of the best ranked models
were considered. The weights of 3 to 5 that these two
attributes assumed significantly differ from the weight of
1. In the estimation of u1500, sand content was again the
least important input attribute, having its value fixed at
1 throughout the examined spectrum of models. Silt
content started with a weight close to 3, which quickly
decreased to close to 1, as in the case for u33. Bulk
density and OM content carried practically the same
weight throughout the examined spectrum of models.
The weight of these attributes decreased quickly from
3.5 to a steady 2.7 to 2.8. Such quick decrease could also
be observed in the case of clay content, the weight of
which became steady at around 7.
In the estimation of both properties, the superior role

of clay content became evident. As expected, it was
more emphasized in the estimation of u1500 than in the
estimation of u33. Bulk density is known to play an

important role in determining the water-holding capac-
ity of the soil closer to the wet end of the water retention
curve, where soil structure has more influence through
the formation of macro- and mesopores. Our findings
correspond to this, withDb having a larger impact on the
estimation of u33 than on the estimation of u1500. Silt
and sand content played a less important role; however,
these properties are strongly correlated to clay content,
the input attribute with the most weight.

Table 4 summarizes the results of estimations using un-
equal weighting of input attributes quantitatively. Once
the best performing combination of attribute weights
had been found for the NRCS test data set, we applied
that combination to make estimations for the HYPRES
test data set as well. The gain in estimation accuracy
using unequal attribute weighting was marginal com-
pared with the originally used equal weighting case,
regardless of which test data set was used and which
output attribute was estimated. The improvement in

Fig. 8. Mean root mean squared residual (RMSR) values and their
standard deviations for estimating water retention at (above)
233 kPa and (below) 21500 kPa matric potential obtained using
different scenarios to include outliers in the data. Outlier settings:
1 5 outliers always in the reference data; 2 5 outliers mixed in
randomly; 35 outliers always in the test data; 45 outliers not in the
data. Vertical bars represent 61 standard deviation, based on
200 ensembles. SSC 5 sand, silt, and clay content; SSCBD 5 sand,
silt, clay, and bulk density; SSCOM 5 sand, silt, clay, and organic
matter contents; SSCBDOM 5 sand, silt, clay, and organic matter
contents and bulk density.

Fig. 9. Running input attribute weights to minimize estimation root
mean squared residuals (RMSR) of (a) water retention at 233 kPa
and (b) 21500 kPa matric potential. The model used sand, silt, and
clay content, bulk density (Db), and organic matter (OM) content
as input and 1600 samples in the reference data set.
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model performance always remained ,0.0012 m3 m23

and did not yield a statistically significant improvement.
This is an indicator of the relative insensitivity of this
technique to suboptimal attribute weighting. Nemes
et al. (2006) noted similar insensitivity when they exam-
ined other perspectives of finding the optimal settings
for the k-NNmodel. Finding the technique insensitive to
unequal weighting to a large extent also helps explain
our findings in Case Study 5. Including outliers in the
reference data set in practical terms means that we
slightly change the weight of particular input attribute(s)
compared with other input attributes. Finding relative
insensitivity to unequal weighting points in the same
direction as our findings in Case Study 5 about the
simulated presence of outliers.

Estimations using Locally Specific Data
Results for all four test data sets are shown in Table 5

in terms of RMSR and MR for estimating u33. Results
for the estimation of u1500 were similar and thus are not
shown. Underlined data are data that were published
earlier by Nemes et al. (2006) or in this study (c.f.,
Table 2). Estimation accuracy for the NRCS test data set
did not change significantly with the addition of the
BRAZ[OUT] data to the reference data set. Regard-
less of the number of input attributes used, changes to
RMSR and MR remained well within the variation
among ensemble members. Trends in RMSR and MR
for the HYPRES data set were similar, except that
the absolute values were somewhat larger than for the
NRCS data set. This was, however, expected based on
the findings of Case Study 1. Estimation accuracy for the
HYPRES data set was not affected significantly by the

addition of BRAZ[OUT] soils to the reference data set.
A very small improvement (0.002–0.003 m3 m23) was
found when estimations were made for samples in the
BRAZ[IN] data subset. The values in absolute terms are
comparable—only slightly worse—to the values for the
HYPRES test data set. This suggests that the k-NN
technique is applicable for data sets that originate from
other geographical areas, but whose data ranges are
represented in the reference data set. The difference
between the accuracy for the HYPRES and BRAZ[IN]
data sets is expectedly due to the major difference in
climatic conditions under which the BRAZ soils and
soils of the NRCS and HYPRES data sets developed.
For the BRAZ[OUT] test data set, estimations were
significantly worse than for any other examined test data
set, using only the NRCS data set as reference data. This
was the case in terms of RMSR as well as MR. An MR
of 0.1 m3 m23 is considered very large. With the inclu-
sion of some BRAZ[OUT] data in the reference data
set, estimation results changed dramatically for this test
data set, as estimation accuracy in terms of RMSR be-
came almost as good as for the NRCS data set (not sig-
nificantly different at p 5 0.95), and in terms of MR the
improvement is 75 to 80% comparedwith the original val-
ues, depending on how many input attributes were used.

The hypothesis that using local data will improve esti-
mations was not rejected by our experiment with these
data. We showed that, while large improvements can be
achieved for “locally specific” data, estimations for test
data originating from other sources could remain prac-
tically unchanged. The fact that changes in the estimations
were very limited for the BRAZ[IN] data set confirms
that the change is not data origin specific, but specific for
the actual soil properties. Test data set samples that fall to
the edge of properties of nonspecific and locally specific
soils or to the edge of the entire data domain still denote
special cases. Presumably, many of the samples that fall
to the edge of the data domain are the ones that show the
most bias in the estimations. It is because these test
samples are not uniformly surrounded by neighbors on
each side within the data domain.

When parametric PTFs are used and (additional) lo-
cally specific data becomes available, a user either needs
to develop his or her own independent PTF—for which
there may not be enough data—or needs to add the data

Table 5. Summary of results, in terms of root-mean-squared residuals and mean residuals, of the estimation of water retention at 233 kPa
matric potential for the NRCS, HYPRES, and BRAZ data sets. Underlined are numbers of comparison that have been published by
Nemes et al. (2006) (for the NRCS set) or are included elsewhere in this study (for the HYPRES set, c.f., Table 2).

NRCS BRAZ(OUT) BRAZ(IN) HYPRES

Reference data set Input attributes† Mean SD Mean SD Mean SD Mean SD

RMSR, m3 m23

NRCS SSC 0.054 0.003 0.113 0.005 0.072 0.001 0.069 ,0.001
NRCS 1 BRAZ(OUT) SSC 0.054 0.003 0.055 0.003 0.070 0.001 0.069 ,0.001
NRCS SSC, Db, OM 0.050 0.002 0.112 0.004 0.072 0.001 0.065 ,0.001
NRCS 1 BRAZ(OUT) SSC, Db, OM 0.051 0.002 0.053 0.003 0.069 0.001 0.065 ,0.001

MR, m3 m23

NRCS SSC 0.000 0.003 20.100 0.005 20.012 0.001 0.004 0.001
NRCS 1 BRAZ(OUT) SSC 0.001 0.003 20.020 0.005 20.009 0.001 0.004 0.001
NRCS SSC, Db, OM 0.002 0.002 20.097 0.004 20.009 0.002 0.008 0.001
NRCS 1 BRAZ(OUT) SSC, Db, OM 0.003 0.002 20.025 0.005 20.005 0.002 0.009 0.001

† SSC 5 sand, silt, and clay content; Db 5 bulk density; OM 5 organic matter content.

Table 4. Comparison of root mean squared residuals (RMSR)
obtained by the best combination of unequal input attribute
weights and by equal input attribute weights for two different
data sets.

NRCS HYPRES

u33† u1500† u33 u1500

RMSR minimum 0.0479 0.0329 0.0641 0.0497
RMSR with 1:1 weights 0.0491 0.0338 0.0649 0.0504

† u33 5 water retention at 233 kPa matric potential; u1500 5 water
retention at 21500 kPa matric potential.
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and redevelop or readjust the original PTF. In the lat-
ter case, however, addition of data with differing data
characteristics will change the final form of the relation-
ships between inputs and the output. Such relation-
ships—i.e., the equations of parametric PTFs—are valid
globally for the entire range of soils on which they were
developed. This way, estimations made for the entire
range of soils are affected by the addition of some
specific soils. This is not the case when the k-NN tech-
nique is used, given its design to use samples of the
reference data set only from the neighborhood of each
target object.

CONCLUSIONS
Nemes et al. (2006) introduced a k-NN technique

to make estimations of water contents at 233 and
21500 kPa matric potentials. They found the perfor-
mance of the technique to be comparable to that of
NNets. In this study, we further tested the performance
of the k-NN technique under different settings. Estima-
tions were made for different data sets; the technique
was exposed to different weighting methods, and its
performance was monitored for different specific parts
of the data space. We also examined the performance of
this technique using different numbers of ensembles.
We found that the k-NN technique is, in general,

insensitive to potentially suboptimal settings in many
aspects. The k-NN technique performed almost equally
well as NNet models developed on the same data to
make estimations for data sets of different origin. The
use of approximately 50 ensemble members resulted in
estimation results that were not significantly affected by
the addition of new ensemble members. The k-NN tech-
nique showed little sensitivity to the choice of applied
sample weighting methods and to potential suboptimal
settings in terms of input attribute weighting. Differ-
ences in data density in parts of the reference data set
did not seem to substantially impact the estimation
error. Substantial improvement was achieved for locally
specific data when some local samples were included in
the reference data set, while estimations for other sam-
ples remained almost unaffected.
The k-NN technique appears to be a competitive

alternative to other techniques to develop PTFs. The
technique shows a large degree of stability and insensi-
tivity to nonoptimal algorithm settings and the use of
different options. Differences introduced by such sub-
optimal settings and options in the algorithm or in data
weighting caused only marginal changes in estimation
accuracy. Such small differences are unlikely to have
noticeable impact on simulation results that use one
water retention estimate or the other. This technique
can easily adopt new data without the need to redevelop
equations, and can be developed into an “umbrella
PTF” tool to make geographically or climatically spe-
cific estimations of soil hydraulic properties.
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